联系
我们
投稿
反馈
评论 返回
顶部

内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

当AI开始助力抗疫、辅助研发,医疗能否迎来春天?

2020-06-18 12:47 出处:互联网 人气: 评论(
中超排行榜 韩国女歌手 好书推荐排行榜 越野车排行榜 q版网游 淘宝女装排行榜 江苏大学排名 石靖

本文由微信公众号苏宁金融研究院(ID:SIF-2015)原创,作者为苏宁金融研究院研究员李加庆,首图来自壹图网。

  人工智能(AI)技术正在许多行业中产生变革,但只有在医疗领域,AI的影响才有望真正改变我们每一个人的生活。而这样的改变也许正在发生……

  一

  疫情肆虐,AI助力防控

截至目前,全球确诊人数已超过800万。这次疫情给全球带来了巨大挑战。

近年来,人工智能已经开始在医疗卫生领域发挥重要作用。先进的计算和数据分析工具使信息共享和诊断实践成为可能,并加深了医疗行业对疾病和感染的理解。在遏制Covid-19(新型冠状病毒肺炎)的迫切需求推动下,世界各地的政府机构和企业越来越多地将目光投向基于人工智能的技术,以提供对病毒传播的分析,并寻求治疗药物和方法。

  我国在疫情刚开始传播的时候,就采用AI技术进行疫情防控,在春运期间,火车站、机场、地铁等公共场所的测温压力巨大,各大图像识别技术巨头们很快部署了AI测温解决方案,采用图像识别与红外等结合的方式,有效避免接触式测温带来的病毒传播风险;疫情开始有所缓解、准备复工之时,不少AI公司提供了大数据AI技术,对迁徙人员进行动态跟踪,结合疫情地图,有效及时地跟踪传染源、接触源,为复工保驾护航。

  国外疫情爆发的要晚一些,各个国家也采用了AI技术在多个环节助力疫情防控:

  (1)AI疫情辅助控制

迪拜采用了图像识别技术来自动判断人们是否遵守了疫情防控规定,比如保持距离,从图像可以看出该AI程序可以自动识别出人与人之间的距离,这样的应用在公共场所可以对人群密集提出预警提示。

(2)新冠治疗药物研发

  总部位于伦敦的药物研发公司Benevolent AI在1月底开始将注意力转向冠状病毒问题。该公司用知识图谱技术来快速分析科学文献和生物医学研究资料,挖掘疾病的遗传和生物特性与药物的组成和作用之间的联系。该公司之前一直专注于慢性疾病,而不是传染病,但通过向其输入关于病毒的最新研究,能够重新调整系统,使其专注于新冠药物的研发。目前该公司已经进行潜在新冠治疗药物的临床试验。

  (3)新冠病毒结构分析

  DeepMind正在利用基因组的数据来预测生物体的蛋白质结构,揭示哪些药物有可能对COVID-19起作用。DeepMind是Google母公司Alphabet旗下的人工智能公司,在2016年推出的人工智能围棋程序AlphaGo,战胜了人类围棋选手之后一举成名,在当年将深度学习和人工智能技术直接推向高潮,其最新版本已无对手。

  DeepMind发布了一个名为AlphaFold的深度学习库,它使用神经网络来预测组成生物体的蛋白质如何根据其基因组变换形状,进而计算出哪些药物可以与新冠病毒生物体细胞结合,用来破坏病毒细胞,破坏它与人类细胞的结合方式,减缓病毒的繁殖速度。

  (4)COVID-Net

  加拿大初创公司Darwin AI开发了一个神经网络COVID-Net,可以通过X射线筛查COVID-19感染的迹象。DarwinAI已将COVID-Net作为一个开源系统发布,受到了AI研究人员的热烈追捧,该公司现在正致力于将COVID-Net从一个技术实现变成一个可以被医疗工作者使用的系统。它现在还在开发一种神经网络,用于对感染COVID-19的患者进行风险分层,以此来分离那些可能更适合在家中自我隔离恢复的病毒感染者,和那些最好进医院的病毒感染者。

  二

  医疗AI的大机遇

  这次疫情让各个国家的医疗体系翻了个底朝天,新冠病毒的流行让医疗系统的脆弱暴露在阳光之下。响应不及时、信息流通受阻、医务人员不足、医疗资源分配不均等诸多问题在多数国家都存在。因此,也让整个人类社会意识到医疗体系变革的紧迫性,是时候重新思考医疗体系的升级了,而人工智能技术在这次疫情中的积极表现,让炒了这么多年的医疗AI概念走入大众视野。

而且,随着人口老龄化问题越来越突出,老年人口对于医疗的需求也将呈增长态势。根据国家统计局的数据,我国2019年65岁及以上老人已经突破1.7亿人,占人口总数13%。这样的增长趋势对于医疗资源是一个现实而急迫的挑战。

将AI应用在医疗中虽不能完全解决医疗资源短缺的问题,但是却可以借助AI快速发展的红利,为医疗领域增添新的动力,刺激医疗事业的发展,拓宽医疗资源的使用范围,使全球各地患者更平等地受益于科学进步。医疗健康领域也切实存在很多需求需要AI来帮助实现,从防范疾病和减轻医护压力角度,至少有以下几个方面需求:

  (1)基于大数据的疾病或疫情预警;

  (2)智能读片,辅助医疗影像诊断输出,可以缓解医院的阅片压力;

  (3)智能诊疗系统,辅助医生做好疾病初步筛查,甚至辅助手术;

  (4)智能医护辅助系统,帮助护士做好入院评估以及护理监控等工作。

从技术供给侧考虑,人工智能技术正逐步走向成熟,各种应用场景也日趋完善,加上软硬件的持续迭代,让AI技术的广泛落地近在眼前。而且,国家对人工智能、大数据、5G等前沿技术的发展从政策上给予了足够的重视,并加入国家“新基建”发展规划,进一步提升其战略地位。医疗AI应用领域在这个浪潮之下,正可以踏上快速发展的新车道。

分享给小伙伴们:
本文标签:

更多文章

相关文章

  • 蛮便宜网
  • 天猫内部优惠券网
  • Copyright © 2002-2011 版权所有