主页(http://www.cnwulian.net):人工智能影响医疗行业的方式有哪一些
人工智能将为这一进化提供许多基础技术,通过支持预测分析和临床决策支持工具,在提供者认识到采取行动的必要性之前解决问题。人工智能可以为癫痫病或败血症等疾病提供早期预警,这通常需要对高度复杂的数据集进行深入分析。
采用人工智能还可以更好地定义癌症的侵袭性,并更恰当地确定治疗目标。此外,人工智能正在帮助实现“虚拟活检”,并推进放射医学领域的创新,该领域致力于利用基于图像的算法来表征肿瘤的表型和遗传特性。
2018年世界人工智能医疗创新论坛(WMIF)联合主席AnneKiblanksi医学博士和PartnersHealthcare公司首席学术官、医学博士GreggMeyer说,这种给每个行业领域带来的“颠覆性”都有可能为患者带来显著的益处,同时具有广泛的商业成功潜力。
在这一过程中取得成功可能使临床医生能够更准确地了解肿瘤的整体表现,而不是根据恶性肿瘤的一小部分属性做出治疗决策。
电子健康记录数据有助于识别感染模式,并在患者开始出现症状之前突出其风险。利用机器学习和人工智能工具来驱动这些分析可以提高其准确性,并为医疗保健提供者创建更快、更准确的警报。
如今的医疗保健行业已经十分成熟,可以进行一些重大变革。从慢性病和癌症到放射学和风险评估,医疗保健行业似乎有着无数的机会利用技术在患者护理方面部署更精确、高效和有效的干预措施。
但计算神经科学成果中心的联合主任、布里格姆妇女医院(BWH)神经外科医生OmarArnaout博士说,帮助患者适应这种亲密、持续监测的数据可能需要额外的工作。
利用人工智能技术进行临床决策支持、风险评分和早期预警是这种革命性的数据分析方法最有前景的发展领域之一。
随着技术的发展,患者对医生的要求越来越高,并且可用数据的数量继续以惊人的速度增长,人工智能将成为推动医疗护理工作持续改进的引擎。
他说。“在这些患者中,趋势可能正在缓慢发展。有时当医生想要查看某人是否正在恢复时,可能查看10秒钟监控一次的数据。但是,要想从24小时采集的10秒数据中看出它是否发生了变化,就像查看头发在此期间是否变长了一样。但是,如果采用人工智能算法和来自许多患者的大量数据,那么就可以更容易地将人们所看到的内容与长期模式相匹配,并且可能会发现一些细微的改进,这些改进会影响医生在护理方面的决策。”
3.扩大服务不足或发展中地区的医疗服务发展中国家缺乏训练有素的医疗保健提供者,其包括超声波技术人员和放射科医生,这将极大地减少了采用医疗服务拯救患者生命的机会。
例如,人工智能成像工具可以通过胸部X光检查肺结核的症状,通常可以达到与医生相当的精确度。这项功能可通过适用于资源匮乏地区的提供商的应用程序进行部署,从而减少了对经验丰富的诊断放射科医生的需求。
与传统分析和临床决策技术相比,人工智能具有许多优势。当学习算法与训练数据交互时,可以变得更精确,使医生对诊断、护理过程、治疗变异性和患者结果获得前所未有的见解。
然而,人工智能算法开发人员必须谨慎考虑这样一个事实,即不同民族或不同地区的人群可能具有独特的生理和环境因素,这些因素会影响疾病的表现。
人工智能可以通过接管一些通常分配给人类的诊断职责,帮助减轻临床医生严重不足的影响。
在超大的数字图像上深入到像素级别的分析可以使医生识别可能逃脱人眼的细微差别。
核磁共振分析已经产生了许多成功的风险评分和分层工具,特别是当研究人员采用深度学习技术来识别看似无关的数据集之间的新联系时。
专家预测,在某些情况下,人工智能将使下一代放射学工具能够准确细致,足以取代对活体组织样本的需求。
11.使智能手机成为强大的诊断工具专家认为,继续利用便携式设备的强大功能,从智能手机和其他消费级资源中获取的图像将成为临床质量成像的一种重要补充,特别是在服务不足的地区或发展中国家。
收集和分析这些数据,并通过应用程序和其他家庭监控设备补充患者提供的信息,可以为个人和人群健康提供独特的视角。
她说:“例如,印度受到疾病影响的人口可能与美国的情况非常不同。当我们开发这些算法时,确保数据代表疾病呈现和群体的多样性非常重要,我们不仅可以开发基于单个群体的算法,而且希望它能够在其他人群中发挥作用。”
数据质量和完整性问题,加上数据格式的混乱、结构化和非结构化输入以及不完整的记录,使得人们很难准确理解如何进行有意义的风险分层、预测分析和临床决策支持。
他补充说,“人工智能还可以通过在临床医生审查数据之前确定幻灯片中感兴趣的特征来提高生产力。人工智能可以通过幻灯片进行筛选,并指导我们查看正确的内容,以便我们可以评估哪些内容重要,哪些内容不重要。这提高了病理学家使用的效率,并增加了他们研究每个病例的价值。”
通过为新一代工具和系统提供动力,使临床医生更加了解病情的细微差别,更有效地提供护理服务,更可能提前解决问题,人工智能将迎来提高临床治疗质量的新时代,并在患者护理方面取得令人兴奋的突破。
2.开发下一代放射工具通过磁共振成像机(MRI)、CT扫描仪和X射线获得的放射图像提供对人体内部的非侵入性可见性。但是许多诊断过程仍然依赖于通过活体组织检查获得的物理组织样本,取得这些样本具有导致患者可能受到感染的风险。
马萨诸塞州总医院(MGH)临床数据主任、医学博士BrandonWestover说,机器学习还可以帮助支持是否继续为重症患者提供护理,例如心脏骤停后进入昏迷状态的患者。
在PartnersHealthcare公司专家的帮助下,包括哈佛医学院(HMS)的教授、合作伙伴首席数据科学官KeithDreyer博士和马萨诸塞州总医院(MGH)研究战略和运营总监KatherineAndriole博士提出了人工智能将彻底改变医疗服务和科学的12种方式。
5.含有抗生素耐药性的风险