联系
我们
投稿
反馈
评论 返回
顶部

内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

企业纷纷下水 “AI+医疗”门槛为何还这么难迈

2017-10-29 12:13 出处:互联网 人气: 评论(
与小仙女混居的日子 宇智波鼬异界之旅 宇宙小姐简谱 玉珠奇侠传 欲魔性奴 预见未来好看吗 元阳师 越洋追踪 刘德华 月梅汁 月氏童话 云长传 再见溪谷快播

  【中国安防展览网 企业关注】 2017年初,世界癌症日(2月4日),IBMWatson医生第一次在中国“出诊”,仅用10秒就开出了癌症处方。这不仅引发舆论热潮,更振奋的是这让我们看到了人工智能正在颠覆性的改造传统医疗。

企业纷纷下水 “AI+医疗”门槛为何还这么难迈

 

  IBMWatson可以在17秒内阅读3469本医学专著、24.8万篇论文,69种治疗方案、61540次试验数据、10.6万份临床报告。通过海量汲取医学知识,包括300多份医学期刊、200多种教科书及近1000万页文字,IBMWatson在短时间内可以迅速成为肿瘤专家,拥有更强大脑的癌症专家。在印度,Watson医生为一名已经无药可救的癌症晚期患者找到了诊断方案;在日本,Watson医生只花了10分钟就确诊了一例罕见白血病。
 

  二、“人工智能(AI)+医疗”市场蛋糕巨大;阿里、腾讯、百度、科大讯飞、华大基因等都纷纷下赌入局
 

  有关数据显示,预计到2025年,人工智能应用市场总值将达到1270亿美元。其中,医疗行业将占市场规模的五分之一,即254亿美元,千亿级人民币市场规模。2013-2017年,AI(人工智能)+医疗”各领域共发生融资事件241起。国外“AI(人工智能)+医疗”投资分布最大的在健康管理,其次是新医药和新技术发现,第三是病历分析,最后是医疗影像;在国内,医疗影像投资占比47%,硬件占近30%,健康管理占6%。
 

  中国企业2010年后,已开始迅速布局医疗人工智能领域;2010年也是我国医疗人工智能领域创业分水岭,此前每年出现的这类新创公司数量极少。2014和2015年出现创业高峰,两年内共有52家公司成立;截止2017年7月31日,我国医疗人工智能公司共有131家,集中分布于北京、上海、深圳、杭州、武汉等一、二线城市,其中北京、上海、深圳三城集中了97家公司,占全部公司的76%左右。
 

  泰山汇研究院数据,截止至2017年10月9日,国内医疗人工智能公司累积融资额已超过260亿人民币,融资公司共114家。国内在医疗人工智能布局的企业主要有阿里巴巴、腾讯、百度、科大讯飞、华大基因;海外主要有IBM、Google、苹果、微软、亚马逊等。
 

  三、人工智能为何在中国医疗领域势不可挡?
 

  人工智能在医疗方面的需求主要基于几个客观现实:一方面是优质医疗资源供给不足,成本高,医生培养周期长,误诊率高,疾病谱变化快,技术日新月异;另一方面,随着人口老龄化加剧、慢性疾病增长、对健康重视程度提高,医疗服务需求持续增加。
 

  以医生资源为例,我国目前培养医生的模式是“5+3”,5年医学专业本科教育,再加3年住院医师规范化培训,结业考试合格者才具备医生从业资格……8年的大浪淘沙,真正坚持下来的优秀医生人数有限。
 

  人工智能的核心能力实际上是人类自身已拥有的能力,但与人类相比,最大优势在于计算能力的高效,尤其在数据密集型、知识密集型、脑力劳动密集型行业领域。因此,在医疗领域它将从这三方面产生巨大颠覆:
 

  第一,提高医疗机构和医生的工作效率,减少不必要的人力成本;第二,提早预测疾病风险,发现重大疾病,提前预防,以减少后续不必要的更大医疗支出;第三,方便医生管理看护患者,也方便患者自我健康和疾病的管理,让自查自诊等成为可能,将医疗延伸到院外,前置到院前,同样缓解医疗资源的紧张,降低医疗成本。
 

  四、人工智能(AI)+医疗,四种主流模式应用
 

  从全球创业公司实践的情况来看,AI+医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他,其中以四种模式为主流。
 

  第一、AI+辅助诊疗,即将人工智能技术用于辅助诊疗中,让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。在AI+辅助诊疗的应用中,IBMWatson是目前最成熟的案例。目前IBMWatson已部署在美国多家医院提供辅助诊疗的服务,服务的病种包括乳腺癌、肺癌、结肠癌、前列腺癌、膀胱癌、卵巢癌、子宫癌等多种癌症。
 

  第二、AI+医学影像,是将人工智能技术具体应用在医学影像的诊断上,主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像这类非机构化数据进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,是AI应用的最核心环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握“诊断”的能力。
 

  贝斯以色列女执事医学中心(BIDMC)与哈佛医学院合作研发的人工智能系统,对乳腺癌病理图片中癌细胞的识别准确率能达到92%,与病理学家的分析结合在一起时,它的诊断准确率可以高达99.5%。国内的DeepCare对于乳腺癌细胞识别的准确率也达到了92%。
 

  第三、AI+药物挖掘,是指将深度学习技术应用于药物临床前研究,达到快速、准确地挖掘和筛选合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。通过计算机模拟,AI可以对药物活性、安全性和副作用进行预测。借助深度学习,在心血管药、抗肿瘤药、孤儿药和常见传染病治疗药等多领域取得了新突破。目前,已经涌现出多家AI技术主导的药物研发企业。
 

  第四、是AI+健康管理。目前从全球AI+医疗创业公司来看,主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。
 

  五、医疗AI创业、投资关卡重重,门槛难迈
 

  虽然医疗人工智能是不可逆转的发展潮流,但我们也要清醒地看到,中国人工智能整体发展水平与发达国家相比仍存在不小差距,在前沿基础理论、关键性技术、产业基础平台、人才队伍和监管体系等方方面面都亟待创立和完善。
 

  对所有行业企业投资者而言,医疗人工智能目前遇到不少发展阻力和确定性因素:
 

  首先,数据根基不牢成软肋。人工智能的发展研究是基于海量的大数据,医学影像、医疗病例、基因突变、诊断病例、术后跟踪、健康行为等广泛的数据内容是医疗AI行业应用的前提。以Watson健康为例,它并不仅是一个技术,也包括泛数据的积累,从数据准备、模型建立、优化到最终应用于业务场景,再收集更多数据,周而复始、循环往复,完成深度学习的复杂任务。
 

分享给小伙伴们:
本文标签:

更多文章

相关文章

  • 蛮便宜网
  • 天猫内部优惠券网
  • Copyright © 2002-2011 版权所有