联系
我们
投稿
反馈
评论 返回
顶部

内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

体素科技:全病种医疗影像阅读者

2018-05-09 17:54 出处:互联网 人气: 评论(
涩涩爱图片 一个色夫导航 小原夏希 新金玉梅 钱球网 h动漫美女图片 初瑞雪 聚火爆 卡格妮·琳恩·卡特 椎名理纱 内涵网

「实际上医疗影像领域对深度学习整体的接受速度就很快。因为它确实让前深度学习时代不可能解决的问题变得可解。」丁晓伟仍然以肺结节为例,「上世纪 80 年代以西门子为代表的诸多医疗影像巨头们就组织了大量人力,耗时十年,致力于以手工设计的特征来检测肺结节。然而这样庞大的工程也仅仅能止步于肺结节的检测,无法做好更加细微的结节良恶性风险判断。结节的良恶性是由一些极为微小的特征差别决定的,这很难以语言或手工特征的形式描述,同时规律非常不明显,很难以正向思维进行总结。然而深度学习带来了数据驱动的可能,当模型从无数的真实肺结节样例中抽象出了无法在低维空间进行描述的特征,良恶性、乃至更多的特性描述就变得可能了。」

Voxel 或者说体素,来自于 volumetric pixel 的简称。它是「像素」概念的三维版本,代表了三维空间上数据的最小单位。了解了它的定义,也就不难明白为什么在日常生活里「像素」常见而「体素」不常有了:再高端的相机,拍出来的影像也都是天然二维的,医疗影像几乎是唯一一个原生三维的场景。想要把计算机视觉领域里常见的二维模型用于医疗影像,似乎只有两个选择:把模型升级成三维,或者把图像降级到二维。

作者:邱陆陆

不用常见的二维计算机视觉模型处理影像截面,而是用三维模型处理影像整体,可以说是选了视觉领域最难啃的骨头之一。当影像的大小随着维度增加而指数级地扩大,「内存有限」这个当下深度学习模型的「阿喀琉斯之踵」被打击了个正着;同时,当识别主体占影像的比例指数级地减小,卷积神经网络引以为傲的按层级抽取特征的能力在明显不足的主体信息面前也无从发挥。

而在胸部影像领域,体素在进行一些更为大胆的尝试。

除了肺癌相关数据之外,体素在其他类型肺部病种上也积累了每种约 3 千份的储备,累计收集了超过 15 万份胸部 CT 数据。此外,还有超过 5 万份带有 5 年随访记录的心脏冠脉造影 CT 数据和超过 420 万眼底影像数据。

体素用名字告诉了我们它的选择。「既然医疗影像天生就是 3D 影像,那么我们还是选择使用 3D 模型解决 3D 问题」,丁晓伟这样解释道。

阅读 ()

在用特殊的算法设计解决了算力问题之后,剩下的问题只有一个:数据。想要完成这样一个规模宏大的模型,前提条件是拥有每一张影像的所有信息标注。

在眼底照相中,存在近二十个彼此相关的分类任务,选择进行多任务学习之后,先对哪一个任务进行训练就会极大影响训练时间以及模型效果。「实验证明,先学习那些不确定性减少最快的模型获得的效果最好」,Joseph 介绍道。

以影像为基础,融合多模态数据提供自动转诊能力、提供确诊决策支持、提供初级影像报告,这就是全病种医疗影像阅读者给出的愿景。

机器之心原创

责任编辑:

「用机器学习的语言描述,我们的 VoxelCloud Retina 眼底照相完整解决方案,就是一个能完成 10 种病灶类型的分类和量化,也能完成 8 种可见疾病的分类的多任务模型。」体素眼科产品线负责人 Joseph 介绍说。

分享给小伙伴们:
本文标签:

更多文章

相关文章

  • 蛮便宜网
  • 天猫内部优惠券网
  • Copyright © 2002-2011 版权所有