联系
我们
投稿
反馈
评论 返回
顶部

内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

吴恩达之师:人工智能革命尚未开启!

2018-04-25 12:12 出处:互联网 人气: 评论(
同涩网好看的最新限制分级 妮可罗宾h 七月樱花网 あいりみく 关闭外星怪物们的时光隧道 kayden kross种子 加藤莉娜作品封面 动漫美女邪恶动态图 基金净值查询360007 动漫h贴吧

吴恩达之师:人工智能革命尚未开启!

2018-04-24 15:45 来源:GGV纪源资本 人工智能 /技术 /操作系统

原标题:吴恩达之师:人工智能革命尚未开启!

作为机器学习领域的泰斗级学者 ,Michael.Jordan指出了 AI 作为一门新兴学科所面临的挑战,同时也呼吁人们要以务实的态度对待近期的技术发展。

来源:机器之心

作为机器学习领域的泰斗级学者,加州大学伯克利分校教授 Michael .Jordan(他的学生包括邢波、吴恩达等人)一直对于当前人工智能的发展持谨慎态度。他发表的前瞻性文章再次引起了人们的热议。在文中,Jordan 指出了 AI 作为一门新兴学科所面临的挑战,同时也呼吁人们要以务实的态度对待近期的技术发展。

人工智能(AI)是这个时代的「咒语」。这个词组被大量技术人员、学者、记者和风险投资家等挂在嘴边。和很多从技术领域、学界扩散到公众认知的词组一样,对「人工智能」这一词组的使用也伴随着大量误解。但是这不是大众不理解科学家的典型案例,因为科学家也和大众一样糊涂。「我们的时代正在亲历堪比人类的硅谷智能的崛起,这太令人振奋了。」而正是这个观点吸引我们,也让我们害怕。并且,不幸的是,它分散了我们的注意力。

每个人在谈论现在这个时代时都会有不同的叙事方式。想想这个故事,涉及人类、计算机、数据和生死攸关的决策,但是聚焦点不是硅谷智能神话。我妻子 14 年前怀孕时,我们做了一次超声波检查。房间里有遗传学家,她指着胚胎心脏周围的白点,「它们是唐氏综合征的标志,这个胎儿的风险现在上升到了 1/20。」然后她告诉我们应该通过羊膜穿刺术检查胚胎是否有唐氏综合征引起的基因变化。但是羊膜穿刺术风险较大,手术过程中胚胎死亡的概率大约是 1/300。

作为一名统计学家,我决定找出这些数字的来源。简单来说,我发现十年前在英国有一次统计分析,这些白点(反映出钙沉积)确实是唐氏综合征的标志。但是我还注意到我们测试时所使用的成像机器每平方英寸的像素比英国研究中使用机器多出数百个像素。我告诉遗传学家我认为这些白点有可能是「假正类」,也就是「白色噪声」。她说:「啊,这就解释了为什么几年前唐氏综合征诊断率开始上升,我们从那时候开始使用新机器。」

我们没有做羊膜穿刺术,几个月后一个健康的女婴降临人世。但是这个小插曲让我感到困扰,尤其是粗略计算后我意识到同一天全世界有数千人得到了唐氏综合征的诊断结果,很多人可能做了羊膜穿刺术,一些胎儿可能因此死亡。这样的事每天都在发生,直到问题被修复。关键是这个小插曲揭示的并不是我个人的医疗状况,而是利用不同地方和时间的变量和结果作为度量标准的医疗系统在其他地方和时间实施统计分析,并应用其结果。

问题不只是数据分析,而是数据库研究者称作「provenance」(数据溯源)的东西,宽泛来讲,即数据来源、从数据中得到了怎样的推断,以及这些推断与现在的状况有多大关联。尽管训练有素的人可以基于个案分析解决这些问题,但是关键在于设计全球范围医疗系统的人能够在没有详细人类洞察的前提下做到这些。

我同时也是一名计算机科学家,这件事让我想到了在我的教育经历中没有构建此类全球范围的推断和决策系统所需要的原则——综合计算机科学和统计学,以及人类实用。我还想到此类原则的开发,不仅需要医疗领域的努力,还需要商业、运输业和教育行业的共同努力,其重要性至少与构建具备打游戏或具备运动技巧的酷炫 AI 系统持平。

不管我们近期是否能够理解「智能」(intelligence),我们都面临一个重要挑战,即把计算机和人类结合起来,来提升人类生活质量。尽管很多人认为这项挑战与创造「人工智能」相比不值一提,但是从更平淡的角度来看(并不持有过分敬畏),这也是创建工程的新分支。就像几十年前的土木工程和化学工程一样,这一新领域旨在控制几个关键想法的力量,安全地为人类带来新资源和新能力。

土木工程和化学工程基于物理和化学,而这一新的工程领域将基于上个世界赋予全新内容的理念,如「信息」、「算法」、「数据」、「不确定性」(uncertainty)、「计算」、「推断」以及「优化」。此外,由于这一新领域的主要关注点在于数据来源和人类,因此其发展需要来自社会学和人类学的观点。

尽管其构造块已经开始出现,但将这些构造块组合起来的原则尚未出现,因此这些构造块现在只是临时堆砌在一起。

因此,就像在土木工程出现以前人类就可以建造房屋和桥梁一样,现在人类也在努力构建涉及机器、人类和环境的社会范围推断和决策系统。就像早期的建筑和桥梁有时会以无法预料的方式倒下,并且造成悲惨的结果,我们的一些早期社会范围推断和决策系统也已经出现严重的概念缺陷。

不幸的是,我们很难预测下一个出现的严重缺陷是什么。我们所丢失的是一个具备分析和设计原则的工程领域。

目前大众在提到这些问题时过分使用「AI」作为智力标配,这使得理性谈论人工智能技术的范围和结果变得困难。让我们更仔细地考虑「AI」过去、最近和历史上指什么。

今天大部分被称为「AI」的事物(尤其是在公共空间中)在过去几十年叫做「机器学习」(ML)。ML 是结合统计学、计算机科学和其他学习的知识,设计能够处理数据、进行预测和帮助决策的算法的算法领域。从对现实世界的影响来看,机器学习是真材实料,而不只是最近。确实,1990s,我们可以清楚地看到机器学习会发展成为具备大量的产业关联性,在世纪转换之际,具备前瞻性的公司(如亚马逊)已经在业务中使用机器学习,解决诈骗检测和物流链预测中重要的后端问题,构建创新性的消费者服务,如推荐系统。

之后二十年随着数据集和计算资源的快速发展,很明显机器学习将很快掌控亚马逊,本质上是所有公司,决策与大数据联系紧密。新业务模型将出现。「数据科学」开始用于指代这种现象,这反映出机器学习算法专家需要与数据库和分布式系统专家合作来构建可扩展、鲁棒性机器学习系统,同时也反映出这些系统的更大社会和环境影响范围。

过去几年,这些观点和技术趋势被重新命名为「AI」。这值得审慎思考。

分享给小伙伴们:
本文标签:

更多文章

相关文章

  • 蛮便宜网
  • 天猫内部优惠券网
  • Copyright © 2002-2011 版权所有