主页(http://www.cnwulian.net):不确定性环境下的智慧城市顶层设计
不确定性环境下的智慧城市顶层设计
2017-03-31 14:27:11 来源:电子政务智库 关注:次
分享到:
原标题:智慧城市顶层设计与不确定性本文为作者胡小明授权发布。
一、 智慧城市面对的不确定性
▌为什么要关注不确定性
信息技术应用的成功激发了智慧城市的构想,但智慧城市顶层设计却频频出现难以落地的问题,重要原因是没有意识到信息技术工具都有其适用的边界,信息技术是利用历史的数据与经验的算法来解决未来的问题,它只能适应确定性环境,无法适应不确定性环境,确定性是信息技术应用的边界,智慧城市恰恰具有极大的不确定性,顶层设计必须识别不确定性才能使智慧城市顺利落地。
▌两种类型的政府业务
智慧城市的一项重要任务是推动服务型政府建设,信息技术提高政府工作效率的可行性与政府的业务类型密切相关,政府业务可分为两类:
以规范化操作为中心的基层服务型业务,主要面对确定性问题;
以政府决策与管理为中心的政府高层业务,主要处理不确定性问题。
两类业务面对问题的确定性程度有很大不同,这种差别将会极大地影响信息技术应用的有效性,顶层设计需要选择更有效的业务领域。
▌信息技术对基层业务的积极贡献
政府基层业务是信息技术最容易发挥作用的领域,发改委、网信办等十部委联合提出“一号、一窗、一网”的要求,面对的正是信息技术最能够提高政府服务的效率之处。信息技术能否发挥作用依赖于业务规范化程度,政府基层服务的规范性支持了信息化应用取得高效益。
▌信息技术对高层决策作用不大
政府的重要决策是由领导人制定的,决策本身需要创新思维,决策需要解决的是仅靠数据不能解决的问题,从数据中能够计算出未来的策略不需要高层决策,只有缺乏数据、没有先例、需要创新的重要场合才需要高层决策。决策者不仅要制定政策还需要承担责任,创新与责任都是计算机系统无法做到的。
▌城市产业发展的不确定性
智慧城市的产业发展具有不确定性,因为产业发展不是本地区政府所能控制的,产业是跨地区竞争的,技术是不断更新的,发展态势不仅受到本地区策略的影响还受到外地市场竞争的影响,不确定性是产业发展的基本规律,智慧城市对产业发展做精确设计是不可能的,政府能做的主要是改善经济发展的基础环境,如交通与通信,城市更宜居,提高人才吸引力等。
▌智慧城市需要面对不确定性
虽然大数据、人工智能、云计算、物联网等先进技术对智慧城市建设增加很多重要手段,但是信息技术还是有其与生俱来的局限性,其能力与局限均来自信息技术的机理,信息技术只能解决确定性问题,因此顶层设计必须从确定性与不确定性问题的分析入手,扬长避短地选择合适的领域与合适的项目,提高智慧城市建设的效益水平。
二、 运行管理中心与城市大脑
▌自组织发展的城市没有集中的大脑
大数据、云计算、物联网、人工智能抬高了人们对智慧城市的期望,许多人相信可以利用这些新技术建立城市大脑,使政府的决策走上科学化的道路。建立城市大脑出发点虽然好却不现实,城市的出现有几千年,并不存在什么城市大脑,城市是按自组织模式发展起来的,城市的智慧是分布式存在的,这种智慧模式不是顶层设计可模仿的。
▌信息技术只能构建智能系统
计算机虽然被称为电脑但与人脑思维模式有很大不同,人脑可以有两种思维模式,逻辑思维与直觉思维,直觉思维成为创造性的主要来源。然而电脑只有逻辑思维一种模式,电脑不能创造概念,只能按照逻辑方法处理数据,却不会将数据提升为信息更不会创新(即使人工智能也做不到),信息技术可以建设智能系统却无法真正模拟人脑,智慧城市顶层设计也设计不出超越逻辑的城市大脑。
▌大数据技术解决不了创新问题
大数据技术提升了人们认识问题与处理问题的能力,而信息技术处理问题能力依然存在着先天的局限性,只能应对可预测的变化,该变化规律已经存在于历史数据之中。不确定性意味着未来是不可预测的,而信息技术无法应对不可预测性,大数据也无法解决不确定性问题,大数据没有创新能力。
人脑是可以创新的,人脑不仅能理解包含在数据之中的信息还能理解非数字化的信息,人脑能够从对人性的理解中悟出潜在的需求进行创新并能承担决策风险,这是大数据技术做不到的。
▌人脑能在数据不完备时决策电脑不能
靠完整的政府数据和运行管理中心的计算能力就能够实现决策的科学化只是一种幻想,实际上政府的数据永远是不可能收集齐全的,很多重要的数据并没有进行采集,很多信息无法数字化而无法采集,已采集的数据还存在质量问题,政府官员可以在数据不完备环境下决策,因为人还可以接受其它渠道的信息,包括非数字化的信息,电脑没有这种能力,因而不会在数据不完备时决策。
三、 认识政府数据不完备的现实
▌历史数据并不能支持创新决策
数据收集永远滞后于实际,不论多及时地收集的数据都是历史数据,数据所表达的是过去而不是现在更不是未来。而决策是面向未来的,历史数据并不总是能预测未来,在发展是连续性的环境下预测未来有可能,但是在发展不连续的环境下,未来是不确定的,数据不能预示未来,分析历史数据并不能对未来提出有用的策略建议,历史数据没有支持创新决策的能力。
▌不是所有数据都能收集齐全的
政府数据收集并非唾手可得,政府的数据经由各部门收集,集中起来并不容易,数据的更新维护是通过部门系统完成的,数据可以集中但更新维护渠道却难以集中,很多分析想要的数据政府并没有收集,政府虽然可以发放统计调查表,但数据收集之路艰苦漫长且费用很高,期待政府有足够的数据可支持每项决策分析是不现实的。
▌一些重要信息是无法数字化的