主页(http://www.cnwulian.net):李涵雄:智能制造实现需要的 5 层金字塔结构
雷锋网(搜索“雷锋网”公众号关注)按:李涵雄,博士,香港城市大学系统工程及工程管理系,和中南大学特聘教授。先后入选国家杰出青年基金(海外)获得者(2004),教育部长江学者(2006),国家“千人计划”专家(2010)和IEEE Fellow (2010)。长期担任国际权威期刊 IEEE Transactions on Cybernetics (2002 - 至今)和 IEEE Transactions on Industrial Electronics (2009 - 2015)的副主编和国内多个核心刊物的编委。出版系统建模和系统设计方面的英文专著 2本;在国际权威学术期刊上发表 SCI 论文 180 多篇。连续两年(2014,2015)被国际权威出版社 Elsevier 评为中国高被引学者。最近二十多年来一直从事智能制造方面的研究,侧重于工业过程的智能建模、设计与控制,和基于数据学习的智能决策。
李涵雄教授在大会现场演讲
今天,在湖南长沙举办的“纪念人工智能 60 年系列活动”之“2016 人工智能湖南论坛”上,大会首位重磅嘉宾李涵雄教授从学者的角度和大家分享了“智能制造中的控制及智能化的作用”。
智能制造就是要实现从客户需求到生产的全面自动化,这对未来的控制系统提出了极高的要求。整个工业制造链涵盖多种生产设备和工艺过程:从单个机械动作,到多个嵌套操作,乃至复杂的生产调度管理,因而存在多变量耦合和多尺度的复杂特性。需要针对过程的具体特性进行不同的操控,包括系统设计、过程建模与控制,数据学习与决策。
针对多尺度的复杂性,智能制造的实现需要一个5层的金字塔结构:
硬件传感
数据-信息转换
多模型融合
自我感知
自主决策
通过智能集成多种方法,逐层消除不确定性,增加系统智能;实现从产品智能到生产智能的逐级进化,最终提升工业制造的全面自动化及智能化。
工业 4.0
首先,李涵雄教授提到,人类社会到目前为止大概经历了四次工业革命,第一次工业革命源于水蒸气驱动的纺织机,第二次和第三次工业革命主要依靠电力驱动的生产线以及之后出现的工业机器人,直到最近的提出的第四次工业革命中计划通过协作机器人进行工业升级。
因此,从这个角度来说,不但所有可通讯的设备都能连接在一起,而且还可以大大降低生产成本。从另一个角度来说,工业 4.0 可以看成 CP+,也就是大物理系统,这意味着需要根据市场的需求,通过互联网实现智能制造,最终达到生产的全面自动化。
而传统的做法一般是从市场需求开始,从原材料到产品,再到机器。现在通过智能化实现中间过程全自动,最终能够大大提高生产制造的质量、效率和敏捷性。这种方式可以延伸的工业生产的各个方面,包括未来制造业、网络化能源、智能基础设施以及医疗 IT 等等。
一般来讲工业4.0,有九大技术支柱行业,有人工智能、工业互联网等等这些支柱行业。
制造中的控制作用
制造是一个多尺度的复杂系统,我们一般用系统工程来解决的话,需要将制造系统分解,进行分布求解,最后再合成。因为这取决于人的思维,我们的解决问题的思维是将复杂问题简单化,所有的复杂运算都化作为加减乘除,这是基本的现代化理论。
我举一个制造的例子,就是电子封装工业。这是一个很复杂的生产线,从贴片到包装,由很多个系统过程组成。贴片过程分成三步,一是芯片的抓取,二是要点抓手,三是构化。这三个简单动作是多级嵌套的,同时尺度是不一样的,是多时间和多时空的尺度。
再比如,最常用的点胶机,这是我今年的课题项目。这就是一个多时间尺度的问题,从这里面来看,有一个快时间尺度,然后在分众级别可以有点很多滴胶水。那么由于工业制造业一致性很好,这又是多时间尺度的问题。这是制造当中很普遍的现象,不光是点胶机,很多其他的制造都是这样的。由单个部件生产形成多个部件,但由于最终的性能很难检测,有很大的不确定性,所以往往需要人的干预。
另外一个是温度厂的控制,当一个芯片经过一点时,温度要一致,因此就形成一个时空和空间的一个关系。
多尺度与不确定性
总的来讲,从整个制造业的高度往下看,制造具有多尺度特性;从最底层的设备往上看,先是一个快过程,然后是批处理慢过程。生产级别的逻辑控制是有不确定性的,监督层越往上,智能化需要越来越高。也就是说,底层的确定性比较高,复杂度比较低,越到顶层,对应的复杂度也越来越高。下层制造控制更关心产品质量,而上面制造控制更关心商业市场的利润,这主要适用于企业管理层面。
如果把最底层的机器级和最顶层的工厂级放在一起比较就会发现,其特点是不一样的。机器级是局部特征,而工厂级是全局特征。不确定性很关键,越下面不确定性越小,越上面不确定性越大,这是底层物理驱动的,所以需要采用动态控制。