主页(http://www.cnwulian.net):阡陌交通,数字之用
六年的发展,阿里云从关注交通单一关键环节开始,到思考如何应对大交通治理方、运营方、服务方的现实挑战,围绕交通"规、建、管、养、运、服"进行体系化建设,利用平台化技术综合优化交通资源。这是阿里云交通部门自身发展和转型的历程,也是阿里云与交通行业一起极速奔向全局智能的历程。
本文观点来自:
张磊 阿里云智能城市大脑首席科学家
邓兵 阿里巴巴达摩院城市大脑实验室资深算法专家
肖露 阿里云智能交通物流行业总经理
自古以来,交通便在人类文明发展史上扮演着重要角色。秦始皇统一六国以后修建直道,堪称中国最早的高速公路;长城烽火台白天放烟晚上放火,和当下V2X(Vehicle to Everything,车用无线通信技术)、车和车互联的理念非常相似;汽车、轮渡与飞机次第而来,当技术的进步足以支撑人类探索海陆空,交通的内涵也大大拓展,无远弗届。
与此同时,交通行业正迎来一场数字化的内生变革。"十四五"规划中明确提出,加快建设交通强国,在智能交通领域推动数字产业化探索。
从城市大脑说起
阿里云在交通领域的探索,要从具有标杆意义的城市大脑说起。2016年,中国工程院院士、阿里云创始人王坚博士向杭州市政府提出,"建设城市大脑解决城市病";2019年,王坚博士进一步提出一个问题:能不能把杭州市道路上跑的车辆数清楚?如果数不清楚有多少车,交通管理也就无从谈起。
城市大脑综合运用视频识别、流计算、视觉计算加速等技术,对杭州全城视频数据流进行实时分析,通过数字化手段数清楚了路上跑着多少车辆。
除了能够很好解决交通管理这一刚性难题,城市大脑还帮助阿里云沉淀了数据分析的逻辑和算力底盘,后来扩展到智慧高速、智慧港口、智慧航空等实践中,这是一脉相承的通用能力。
六年的发展,阿里云从关注交通单一关键环节开始,到思考大交通治理方、运营方、服务方的现实挑战,围绕"规、建、管、养、运、服"进行体系化建设,利用平台化技术综合优化交通资源——这是阿里云交通团队自身发展和转型的历程。
如今,阿里云提出了更高的数字化愿景,逐步从城市交通领域走向综合交通的各大领域。一方面能不能进一步数清楚道路、港口、机场、铁路枢纽、航道上,到底有多少人在开车、骑单车、步行、坐飞机、坐高铁、运载货物;另一方面,阿里云从城市交通信控场景接入,沉淀解决交通行业共性痛点和供需问题的解决方案,在智慧高速、物流上云、智慧机场、智慧航司、智慧海事、智慧港口等数字化创新领域,都有了新的实践。
最终,阿里云悟到:交通系统的本质是,更高效地优化基础设施和各类载具资源供给,更安全地满足个人出行、货运物流的需求;而数字化技术,能够做的就是"计算",计算个人、货物的移动需求,计算实时各要素位移的状态,实现高效、精准地匹配和调度。
交通作为传统基建的重要组成,焕发数字化新生的第一步,是建立数字空间的交通全要素数字孪生。
现实来说,今天交通新基建的数字化能力,还有一定的局限性,有三个典型问题:
第一,夜间、恶劣天气,智能化能力急剧下降,因为传统AI靠视觉感知。
第二,设备覆盖有限,存在大量的数据盲区。但优化决策依赖精准全链路数据,否则决策有局限性。
第三,智能设备,如摄像机、雷达、测速、天气传感器等设备之间的孤立性,像盲人摸象,都是局部信息,很难为总体优化提供信息支撑。
针对这三个问题,阿里云对应从三个方向解决技术难题。
但雷达感知域和视觉感知域不同,频率和特性都不一致,需要数据统一;其次,风吹日晒,会造成设备偏移,一段时间后要做动态校正映射矩阵;最后,如果视觉和雷达产生了冲突,你相信谁?相信的依据是什么?第一种各自计算分析,再投票,称之为"后融合";第二种设计深度学习网络模型,实现数据驱动——阿里云选择了后者。在夜间、恶劣天气的感知能力可以达到白天的99.5%。
2.全覆盖。传统摄像机能够支撑的范围大概为200米,如果做全域覆盖,设备建设成本非常高。如何解决?
阿里云采用的解决方案是在深度学习模型里,加上超小目标检测和分割能力,针对特别细小的目标,进行超分辨率放大,保证车辆细节感知。要知道,在真实应用中,超过600米的图像像素已经非常小,把它抠出来并识别出,就可以实现提升一倍以上感知距离。同时,在深度学习模型里,增加盲区的认知推理,比如靠近大桥的地方,已经超出人眼的感知范围,但通过车流的变化,可以推断是否有异常情况。
这样就可以利用技术手段,低成本地解决覆盖距离的问题。
3.全要素。交通全要素包括运动物体的属性、行为逻辑、客观环境。
这里要实现的交通目标是:真实的物理位置、速度、方向、尺寸、车道,要完全量化、一一对应。对交通事件,如违法、违规等行为,要实时感知,第一时间发现,快速决策、避免二次事故。同时准确判断道路环境,快速发现能见度、路面状况的微小变化,以降低未来更大的损失。
这里的技术难点在于,细致识别需要高分辨率图像,而高分辨率图像会导致计算量很大;但反之,如果没有足够的数据量,计算效果又会不好。