主页(http://www.cnwulian.net):“算法+算力”下半场将至——「全球AI芯片·城市智能峰会」万字长文回顾
云天励飞芯片平台-Moss于2018年推出了第二代自主知识产权的人工智能芯片DeepEye1000。DeepEye1000是一款异构多核视觉分析SoC芯片,内嵌一颗自定义指令集神经网络处理器。与通用GPU相比,DeepEye1000单位性能提升20倍,单位能效提升100倍,系统时延降低200倍,具有低功耗、高能效、智升级、可编程等特点,可广泛用于摄像机、机器人、无人机,以及数字城市、新零售等场景,实现视觉AI城市大脑终端摄像机的安全、独立、自主、可控。
随后他在演讲中指出,以AI四小龙为代表的独角兽企业在过去几年里已经取得了非常出色的成绩,但它们的发展也存在一点隐忧,那就是估值过高。张俊博士认为,创业公司估值过高相当于把自己悬在空中下不来了,是非常危险的。
关于全球AI芯片·城市智能峰会
《数据智能 孪生城市-数字孪生助力城市治理能力建设》
天地伟业总工程师 杨清永
张进飞表示,近年来中国城市化加速,给公共安全行业带来了一系列挑战:首先,人口流动越来越频繁,导致管理难度增加;其次,人口大量涌入城市,给城市交通安全带来巨大挑战。
《基于FPGA定制计算构建AI系统》
随后,全球异构系统架构联盟主席、华夏芯CTO John Glossner在大会下半场第六位登台演讲,发表了题为《Designing Heterogeneous IC's for Artificial Intelligence Applications》的精彩演说。
依托于精简优化的算法和所选择的边缘算力,苏州科达创新性地完成了AI超微光在边缘侧的实现任务,已经形成了产品系列并申请了多项专利。
而这一领域的主要进展包括三个方面:一是针对训练数据不足的情况下,学术界在Benchmark标准数据集有哪些努力。他介绍了现有常用Re-ID数据集,和分别基于图像、视频的标准数据集的表现提升情况,并指出基于图像的再识别增长得很快,现在大家的兴趣从图像更多的转到视频上。
随后,云天励飞 CEO 陈宁博士作为下午场的第二位演讲嘉宾登台,围绕《用“芯”探索智能边界》这一主题发表了精彩演讲。
上午场的最后,远望资本、迅雷创始人 程浩在题为《创新管理与企业增长》的演讲中,从企业创新管理的角度为与会者提供许多宝贵建议。
异构计算并不是全新的概念,但由于产品设计难度大、生态系统需要重新构建等挑战,在过去很长一段时间里一直处在不断演进当中。那么如何推动异构计算的发展,John Glossner主席认为,只有采用建立相关标准和规范、众多厂商协同合作这一途径。
《人工智能芯片技术发展及应用》
云天励飞 CEO 陈宁
闫夏卿表示,AI 的上下半场主要有三大转变:一、从对“AI 无所不能”的科幻式理解,转变成了“AI 无所不在”的应用趋势;二、从“AI 即算法”的粗暴理解,转变成了“AI=算法+算力+产品+应用+工程”的综合立体式理解;三、从对技术指标层面的角逐,转变成了应用体验层面的较量。他认为,对AI的讨论深入到细节和工程层面,才是行业走向成熟的标志。
随着AI技术的发展推动安防行业从数字时代进入到智能时代,整个行业的理念也发生了改变:
他表示,在二维世界里面,人脸、语音识别或者很多检测识别真正构筑了二维特征数据的空间,数据的准确率是最高要求。因为只有构建精准的二维数据世界,才能准确表达世界上的万世万物。对行人的特征描述,则是典型的应用三维数据来形成更精准的定位。四维空间内,系统可以加入时域的分析,做更多预测、决策和评估的工作。
峰会下半场,宇视科技副总裁闫夏卿以题为《AI 下半场》的精彩演讲点燃了大会气氛。
刘道福表示,传统ASIC(将一个特定算法硬件化)的思路是无法解决深度学习处理需求的,主要有这么几个矛盾:第一个矛盾是算法越来越快,复杂度越来越高,硬件的规模是有限的,有限规模的硬件和任意规模算法之间的矛盾要解决。
阮沈勇首先回顾了人工智能的历程,以及比特大陆AI算丰芯片的历程。紧接着,针对全球互联网每年产生10的15次方图片和视频流,全球安防摄像头每年产生大于10的17次方图片和视频流,人工智能算力需求暴涨,通用GPU芯片没办法满足算力暴涨的需求,需要专用TPU芯片代替通用GPU芯片,因为TPU芯片比GPU芯片性能数量级提升,成本和功耗数量级下降。
紧接着,比特大陆AI产品线总裁阮沈勇以主题为《AI芯片——智慧城市的核心引擎》的精彩演讲延续了大会的热烈气氛。
比特大陆AI产品线总裁 阮沈勇
《AI时代的安防新理念》
在上述三大论坛中,组委会先后邀请到了高文、Demetri Terzopoulos、权龙、华先胜、贾佳亚、孙剑、颜水成、田奇、程浩、张鹏国、浦世亮、殷俊、余虎、李子青、申省梅、王晓刚、杨帆、陈宁、温浩、陈瑞军、张永谦、肖洪波、胡大鹏等在产学两界享有盛誉的权威专家。论坛内容围绕「摄像机」这一介质入口展开,覆盖AI安防产品、图像与视觉智能算法、视频芯片&服务器、投融资、商业模式等多个维度的主题,旨在打造业内最完整的智能城市论坛体系。
张俊博士表示,中美贸易战倒逼了中国包括芯片在内的技术创新,因此它对中国科技界来说既是危机,也是一次重大机遇。
陈宁表示,人类生活的数字化基本上可以分为三个阶段:互联网阶段、移动互联网阶段、AIoT阶段。这三个阶段背后,其实是通信技术的发展。5G和人工智能带来了端、边、云的创新机会:更加多元化的终端可以进行AIoT的各类信息采集,催生了多模态计算的需求,同时云边结合的架构对计算效率和相应速度提出了更高要求。在此背景下, GPU和CPU已经难以满足快速爆发的AI计算需求,需要更加高效的面向垂直场景的神经网络处理器。
以下是本次大会的精彩回顾:
对于行人再识别的挑战,田奇归纳为三大问题:
《用“芯”探索智能边界》
《芯片产业趋势与产业投资》
《Designing Heterogeneous IC's for Artificial Intelligence Applications》
据雷锋网统计,本次会议共吸引了692位业内人参会,其中包含了64家企业的CEO、371名副总裁及总监级听众,与此同时,北京大学、清华大学、哈尔滨工业大学三所高校的深圳研究生院以及香港中文大学、香港科技大学的110多位教授、硕博士生也均参与了本次大会。
苏州科达首席科学家 章勇
华为诺亚方舟实验室首席计算机视觉科学家、IEEE院士 田奇
1.创新是手段,不是目的,不该为了创新而创新;
3.非理想场景,在对行人检测时存在没有对齐、部分遮挡等问题。
三是在数据化学习上的进展,主要是克服数据集和数据集之间由于不同的光照情况、不同的分辨率、不同的位置、不同的季节、不同季节等等造成的差异。
在殷俊看来,数据世界是四维的:通过感知获得一维数据,来观测真实世界;第二维,通过人工智能对感知数据进行特征提取,真实地反映世界;第三维,随着空间数据的融合,构建空间矩阵,构建与真实场景业务有匹配的数据场景化;第四维,则是全面计算的过程,通过时空数据的维度来构建时空矩阵,充分描述和表达真实世界。
10月27日,由雷锋网 & AI掘金志主办的「全球AI芯片·城市智能峰会」,在深圳大中华喜来登酒店盛大召开。
同时他也强调,尽管随着数据迁移,数据大幅度浓缩,从单点来看要求下降,但四维数据要求的路数和要获得的感知数据更多,网络成本反而增加。到越高维,网络代价越高。所以,需要根据业务综合部署,考量网络和计算的分布,看到底如何形成最佳的计算网络。