主页(http://www.cnwulian.net):智能电网中大规模储能技术研究
中国储能产业发展的问题与建议4云南电网电力研究院,昆明
[19]纪尚昆.超导技术在智能电网中的应用[J].广西电业, 2010,1: 115-117.
[11]王文亮, 秦明, 刘卫.大规模储能技术在风力发电中的应用研究[A].经济发展方式转变与自主创新——第十二届中国科学技术协会年会[C], 福州, 2010.
2.1.抽水蓄能
[25]张华民, 周汉涛, 赵平等.储能技术的研究开发现状及展望[J].能源工程, 2005, 3: 1-5.
3)目前的大容量储能技术主要是抽水蓄能和压缩空气储能。有条件的地方可以因地制宜建设抽水蓄能电站,用于电力系统调峰,或作为可再生能源发电厂的调频备用,减小其发点波动性对系统的影响。考虑到我国海上风电资源大规模开发利用的前景,如选择三面环山的海湾作为水库的坝址,围海建立大型抽水蓄能电站;或选择一些条件好的废弃矿井、洞穴,修建压缩空气储能电站,与当地的大型风电场或光伏电站相结合,为这些可再生能源电站的稳定运行提供支持,增加可再生能源发点的容量可信度,使其称为具有一定可预测性和可调度性的稳定电源。
目前,我国已建成抽水蓄能电站20余座,不足全国总装机容量的2%,低于一般工业化国家5%~10%的平均水平[4]。近期国家加快了相关技术研发的投入,在建装机容量达到12,040MW,居世界第一,2020年我国抽水蓄能电站总装机容量将达到约6000万kW。我国单机最大的浙江仙居抽水蓄能电站于2010年12月开工建设,将安装4台单机37.5万kW的机组,预计2016年建成,建成后可以为华东电网提供300万kW调峰容量。2012年6月15日,国家863计划课题“大规模风电与大容量抽水储能在电网中的联合优化技术”启动,将会进一步促进抽水蓄能电站在国内的发展。
2.2.压缩空气储能
智能电网中大规模储能技术研究 发布时间: 2016-05-10 来源:中国新能源网
胡雪峰1,2,杨卓3,谭向宇4,王达达4,赵现平4,高亚静2,田雷5,赵盛萍1
[17]樊冬梅, 雷金勇, 甘德强.超导储能装置在提高电力系统暂态稳定性中的应用[J].电网技术, 2008, 32(18): 82-86.
[6]S.S.Lee, Y.M.Kim, J.K.Park, et al.Compressed air energy storage units for power generation and DSM in Korea.Seoul:IEEE Power Engineering Society General Meeting, 24-28 June 2007: 1-6.
超级电容器由2个多孔电极、隔膜及电解质组成。超级电容器充放电的速度快,几乎没有充放电次数以及最大放电量的限制,平均寿命可达25年以上。缺点是储能密度低于一般的化学电池,且放电时间很短。其未来的发展主要是面向电动汽车,以及电力系统中短时间、大功率负载的平滑,在电压跌落和瞬态干扰期间提高供电水平等。
参考文献 (References)
[13]程路, 白建华, 贾德香等.国外风电并网特点及对我国的启示[J].中外能源, 2011, 16(6): 30-33.
1)合理规划,优先在电网关键节点建设储能设施。大规模储能建设投资高,为充分发挥其经济效益,应优先在窝电严重区域、频繁缺电区域及枢纽变电站配置储能系统。
1.引言
压缩空气储能由于其储能规模大、成本低,在全球范围内有很大的发展空间。目前美国正计划在俄亥俄州建造世界上最大容量的压缩空气储能电站,总装机容量达到2700MW。我国于2003年开始压缩空气储能的研究,哈尔滨电力部门正在利用现有的地道作为贮气室进行研究。华北电力大学等国内高校正在进行压缩空气系统热力性能计算及其经济分析的研究。
[2]鄂宝民, 黄旭, 庞立军等.先进储能技术在环渤海风电发展中的应用前景分析[A].第十三届中国科协年会第15分会场-大规模储能技术的发展与应用研讨会论文集[C], 天津, 2011.
[4]骆妮, 李建林.储能技术在电力系统中的研究进展[J].电网与清洁能源, 2012, 28(2): 71-78.
飞轮储能的原理是将电能通过电动机转化为飞轮转动的动能储存起来,供电时,将飞轮的动能通过发电机转化为电能输出到外部负载。飞轮储能的主要优点是高充放电率,高循环次数,响应速度快,无污染,维护简单,寿命一般为20年;缺点是成本高、能量密度较低,保证系统安全性方面的费用很高,储能损耗较高,不适合用于能量的长期存储[8]。
1华北电力大学云南电网公司研究生工作站,昆明
能源互联网背景下的储能技术及产业发展[9]张雪莉, 李建宁, 李赢.储能技术的发展及其在电力系统中的应用[J].建筑电气电器应用, 2012, 6(2): 50-57.
在电网失电的情况下,通过传感器技术和通信与信息技术进行故障快速诊断,储能电站切换至电网紧急模式,储能装置向用电设备提供已储备的电能,起到应急供电的作用。
摘要:大规模储能系统是智能电网建设的关键一环,被称为电力成产中发电、输电、变电、配电和用电之外的“第六环节”。本文结合智能电网发展需求,简要介绍了各种储能系统发展现状,重点分析了构建大规模储能系统的必要性及其发展趋势,最后结合项目组调研情况,对当前储能技术发展提出了建设性意见。
[7]魏增福, 郑金.应用于智能电网的储能技术[J].广东电力,2010, 23(11): 22-27.
2华北电力大学,保定
2.3.飞轮储能
储能系统具有响应速度快、运行成本低等特点,将比火电机组更适合充当发电备用的角色。如果将来能够建设更大容量的储能站,或者在全网分散布置大量的小容量储能站,当整体储能容量达到一定规模时,就能逐步减少火电机组的旋转备用。
3.2.削峰填谷,减少系统备用,提高设备利用率
[16]张翼.电力储能技术发展和应用[J].江苏电机工程, 2012,31(4): 81-84.
[5]D.J.Swider.Compressed air energy storage in an electricity system with significant wind power generation.IEEE Transac-tions on Energy Conversion, 2007, 22(1): 95-102.
对于一些重要负荷或者供电可靠性很差的部分地区,在发生事故失去主网电源或者输配电设备检修时需要孤网运行,孤网容量较小,要求备用电源必须相应速度快,储能电站是最适合孤网供电的备用电源。
1)由于不同的储能技术在额定功率下的放电时间不同,因此应用在电网不同的地方时,应该选择合适的储能方式。当用于电能质量改善、电网频率稳定及UPS时,应选择响应快速、放电时间短的电池,例如超级电容器、飞轮储能等;当用于供电的连续性、缓冲或者备用电源时,则选择能放电数秒到数分钟的相应的短时储能方式;当用于电网的削峰填谷或者风能、太阳能等新能源的并网储能时,则选择能够大规模储能,且自放电小的储能方式,例如抽水蓄能、压缩空气储能等;在地理条件受限制的时候,可以选择钠硫电池、液流电池等。
在我国许多地区,电力输送能力的增长远远跟不上电力需求增长的步伐,在高峰电力需求时输配电系统往往变得拥挤阻塞,影响系统正常运行。若把储能系统安装在输配电系统阻塞段的潮流下游,电能被存储在没有输配电阻塞的区段,在电力需求高峰时储能系统释放电能,从而减少输配电系统容量的要求,缓解输配电系统阻塞的情况。同时,储能系统还可以减少电力传输中的异常和干扰,解决输电稳定性阻尼和次同步谐振阻尼等问题,改善动态电压稳定性,以及减少系统低频时甩负荷量。
根据所用化学物质的不同,蓄电池可以分为铅酸电池、液流电池、钠硫电池和锂电池等。铅酸电池价格低廉,技术成熟,可靠性高,占据着电池储能45%~50%的市场,但是其能量密度低、寿命短、污染环境等缺点制约了铅酸电池的发展;液流电池是目前一种前沿储能技术,克服了铅酸电池寿命短的缺点,但是其同样具有污染性;钠硫电池比能量高,可实现大电流、高功率放电,充放电效率高,但是它需要采用高性能的真空绝热保温技术来维持300℃~350℃的工作温度,安全性较差,成本太高;锂离子电池体积小、能量密度高、综合效率高、循环寿命长、无记忆效应、绿色环保,受电动汽车产业的推动,锂电池的技术和资金储备雄厚,是最具有发展前景的电池储能系统,但是锂电池需要较复杂的电源管理系统,生产成本较高。
大规模储能技术对现阶段电网的影响是变革性的,电力系统发、输、变、配、用各个环节都将受益于相关技术的进步。智能电网建设将会促进储能技术的发展,相关科技日新月异是可以预见的。结合储能技术发展遇到的问题,在此提出促进储能技术发展的建议:
[15]俞振华.大容量储能技术的现状与发展[J].中国电力企业管理, 2009, 7: 26-28.
3.智能电网发展大规模储能的必要性
[23]于大洋, 宋曙光, 张波等.区域电网滇东汽车充电与风电协同调度的分析[J].电力系统自动化, 2011, 35(14): 24-29.
[20]石新春, 张玉平, 陈雷.一种基于超级电容器储能的光伏控制器的实现[J].现代电子技术, 2008, 31(21): 133-136.
2.4.电池储能
由于风能和太阳能等新能源具有随机性、间歇性、出力变化快等特点,而且风能还具有不可预测、反调峰特性,大容量的新能源发电直接并网会对电网运行、控制及有功调度带来较大的影响,并网问题现已成为了制约可再生能源发展的瓶颈。新能源发电设备中若配有储能装置,利用储能装置秒级甚至毫秒级的有功调节能力,可以平滑新能源的输出曲线。储能系统的有功动态调节能力使其可发挥类似发电机的对电网的频率调节作用,调和电力供给与需求之间的差异。储能系统在新能源领域的另一项应用是风光储一体化发电系统,该系统可以充分利用风能和光伏在时间和地域上的天然互补性,同时配合储能系统对电能的存储和释放,改善整个风、光发电系统的功率输出特性,缓解风电、光电等可再生能源对电网的不利影响,增加电网对可再生能源的吸纳程度。2009年6月,总投资200亿元,张北成为了世界第一个风光储试验基地。
3.1.满足可再生能源发展需要
能源互联网背景下的储能技术及产业发展5)培养家庭及工商业避峰用电的习惯和意识。私人电动汽车晚上充电、高耗能企业夜间生产等活动习惯,将使得储能概念深入人心,同时促进了低碳社会发展。
[1]A.C.Ferreira, L.M.Souza and E.H.Watanabe.Improving power quality with a variable speed synchronous condenser.In-ternational Conference on Power Electronics, Machines and Drives,4-7 June 2002: 456-460.
2.各种储能方式简介
置于用户侧的储能系统,可增强系统的供电可靠性,改善用户的电能质量。随着智能电网的发展,微网的概念逐步得到推广。各种储能系统作为微网的分布式电源之一,通过电力电子装置在秒级甚至毫秒级快速响应,可以实现微网“永不断电”的目标。另一方面,小型的家庭式储能设备和区域性的微网储能装置,可以通过智能表计接入到周围的大中型电网中,在用电高峰时向电网供电,增加了电力用户与电网的互动。
3.4.促进电动汽车产业发展
3.3.减缓输电压力,提升配网智能化水平
关键词:
2)就目前的储能技术发展水平看,单一的储能技术很难同时满足能量密度、功率密度、储能效率、使用寿命、环境特性以及成本等性能指标,如果将两种或以上性能互补性强的储能技术相结合,组成复合储能,则可以取得良好的技术经济性能。在电网应用中,要实现系统的稳定控制,电能质量改善和削峰填谷等多时间尺度上的功率平准控制,可以将超导储能、飞轮储能或超级电容器等功率密度、高储能效率高以及循环寿命长的储能技术与铅酸电池、液流电池或钠硫电池等能量密度高但受制于电化学反应过程的储能技术相结合,以最大程度地发挥各种储能技术的优势,降低全寿命周期费用,提高系统经济性。
压缩空气储能是利用电网负荷低谷时的剩余电力压缩空气,将空气高压密封在密封空间中,在需要电能时,释放高压空气推动汽轮机发电。压缩空气储能燃料消耗比调峰用燃气轮机组可以减少1/3,所消耗的燃气要比常规燃气轮机少40%,安全系数高,使用寿命长[5,6]。压缩空气储能只适用于大型系统,同时建造受地穴、矿井等特殊地形条件的限制[7]。
2)积极推动储能技术标注体系的建立。国家应加速出台有关新能源及储能设施建设的标准体系和相关规章制度,企业及科研机构也要积极参与建立储能标准,抢占产业发展主导权。
[14]刘怡, 陆志刚, 雷金勇等.电池储能系统在智能电网中的应用[A].第十三届中国科协年会第15分会场——大规模储能技术的发展与应用研讨会论文集[C], 天津, 2011.
目前,世界各国都在结合本国电网特点规划建设智能电网,智能电网的目标是通过全面改造现有的电力系统,构建成高效、自愈、经济、兼容、集成和安全的下一代电网。大规模储能技术的应用是实现智能电网发展目标的关键因素,它通过在传统电力系统生产模式的基础上增加储能环节,在负荷低谷时将电能储存起来,负荷高峰时将存储的电能释放回电网,将原来几乎完全“刚性”的电力系统变得“柔性”起来[1],从而实现智能电网各项设定目标,因此储能技术也被称为电力生产中发电、输电、变电、配电和用电之外的“第六环节”[2]。大规模储能技术在智能电网中具有广阔的应用前景,在削峰填谷、消纳风能等可再生能源发电、平稳电能输出、改善电能质量、应对突发状况对系统冲击等方面具有巨大潜力[3]。
受益于电力电子技术、磁悬浮技术和高强度碳素纤维技术的进步,飞轮储能技术近年来发展迅速。文献[9-11]介绍,国际先进的飞轮储能系统储能效率已经达到了99.4%,可储能100kWh。2004年,巴西实现了利用超导与永磁悬浮轴承的飞轮储能,用于电压补偿。2011年,世界最大的飞轮储能系统完成安装,容量20MW,采用了当前世界最先进的碳纤维复合飞轮转子技术,吸收并释放1MW的电能仅需15分钟。
[21]梁振峰, 杨晓萍, 张娉.分布式发电技术及其在中国的发展[J].西北水电, 2006, 1: 51-53.
[27]A.Taguchi, T.Imayoshi, T.Nagafuchi, et al.A study of SMES control logic for power system stabilization.IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2343-2346.
[3]T.F.Garrity.Getting smart.IEEE Power and Energy Magazine,2008, 6(2): 38-45.