联系
我们
投稿
反馈
评论 返回
顶部

内容字号: 默认 大号超大号

段落设置: 段首缩进取消段首缩进

字体设置:切换到微软雅黑切换到宋体

人工智能颠覆医疗行业吗?

2019-03-15 12:10 出处:互联网 人气: 评论(
疯狂猜歌7字歌名 疯狂猜歌答案5个字 疯狂猜歌答案7个字 疯狂猜歌答案六个字 疯狂猜歌答案七个字 疯狂猜歌答案五个字 疯狂猜歌二个字歌名 疯狂猜歌歌名六个字 疯狂猜歌歌名五个字

编者按:用人工智能医疗,可以达到再确认功能而预防人为疏忽,并且可以提供诊断的辅助、预防误诊,以及缩短确诊的时间,甚至可以透过人工智能医疗的力量来补强自己不熟练领域的技术和知识。


  从1960年代初,学术界陆续展开对于人工智能的研究,一直到目前的机器学习、深度学习等观念,所带来的第三波人工智能浪潮。

本文引用地址:

  对于医疗领域来说,在1970年代初期,人工智能就已经被应用在各项检查,例如根据血液检查的结果来发现患者的感染性血液疾病,并且延伸出辅助医疗者判断采用何种抗生药物来成功的医治,比起过去所采用的经验法则,大大的提升对于感染性疾病的判断准确性。

  透过人工智能技术的力量,可以达到一瞬间完成检验

  直到最近,透过深度学习技术的能力大幅度提升影像辨识正确性,举例来说,透过X光摄影(X-ray photography)、计算机断层扫描(Computed Tomography)、核磁共振(Magnetic Resonance Imaging),以及细胞检查(Cytodiagnosi)等检测设备,能够从溃疡的发现、肿瘤增大的结果,来发现身体的异常状态。而这些检查过程与发现,已经从过去需要耗费10多天,一直到透过人工智能技术的力量,可以达到一瞬间完成检验。

  相信可以预见在不久的未来,医学领域也将出现相当具规模的医疗变革(图一、图二、图三)。对于疾病的诊断方面,以目前较简单的方面来说,已经能够透过类似建议协助的人工智能来进行,例如,可以经由在具有医疗性质人工智能的设备中输入问诊和检查结果,来获得类似诊断的建议内容。

blob.png

  图一 : 从1960年代初,学术界陆续展开对于人工智能的研究。

blob.png

  图二 : 伴随辨识技术提升,医学领域也将出现大模的医疗变革(A)

blob.png

  图三 : 伴随辨识技术提升,医学领域也将出现大模的医疗变革(B)

  和人类一样,医疗领域的人工智能也是需要经过一定程度的学习,才能够产生对于事物判断的能力,应用了学习而来的技术,可以从拍摄的医疗影像中发现病变结果,再加上患者的症状、基因组体数据后,进而可以分析出初步的诊断结果。

  日本透过政策计划推动人工智能在医疗领域的应用

  因此,对于人工智能在医疗领域的应用方面,日本也从政府阶层开始进行计划性地推动,在2016年11月,日本政府所召开的第2届未来投资会议上,首相安倍晋三就明确的宣示,大数据(Big Data)与人工智能将会在预防、健康管理,以及远程医疗方面进行最大程度的应用,来实现高医疗质量将人工智能导入日本医疗体系之中,并且日本厚生劳动省也开始着手规划一系列相关的政策,来因应人工智能医疗时代的来临,包括医疗费用的修正、采用人工智能医疗的激励措施等等,并且预计将在2020年全面实施与推动人工智能医疗制度。

  为了达到在医疗领域更高度应用人工智能能力,高度完整且安全数据库的整建绝对有其必要性,在这方面,日本政府开始整合和建立了,包括电子病历卡、健康检查数据、医疗、照护的收据凭证数据等一元化系统数据库,来做为跨入次时代健康管理系统架构下,提供更好医疗质量的第一步(图四)。

blob.png

  图四: 日本政府正进行规划的患者信息数据数据库概念图

  被称为PeOPLe的人工智能医疗管理系统,已经开始整合与保存日本各医疗机关里每一位患者的医疗诊断纪录,并且授予每个患者识别编号(医疗ID),除了方便保存与管理医疗数据之外,并且也将患者在不同医疗单位就医的数据予以统一保存管理,在未来就诊时,医疗人员可以从数据库中读取患者过去完整的就诊数据与各种检查报告。

  医疗人员方面,在未来也将统一在PeOPLe中记录每一个患者的诊疗信息,同时也可以作为患者在进行回诊时,透过人工智能技术的能力,在进行检查、诊断、治疗的同时,也可以向医疗人员提出医疗支持、建议和各种警示提醒。然而信息化之后,除了可以节省无谓及浪费的检查之外,并且能够将医疗资源进行优化的分配,并且透过匿名化的医疗数据,提供给各学术单位进行各项更为先进的医疗研究。厚生劳动省医药生活卫生局长武田俊彦表示,在未来的健康管理系统方面,在这样的构想下,医疗、照护等数据将都会被网络化,并且作为大数据的一部分,除了减轻医疗人员的负担之外,更可以透过大数据数据库,在人工智能技术协助之下,来对各地域进行下一代的医疗发展规划,让各地域的患者能够得到较为完善的医疗服务。

  不断的反复进行运算,达到快速增加高度判断的能力

  在这样次时代医疗服务体系的建构中,最重要的还是莫过于人工智能的技术力量,但是,在这里人工智能将会进行什么样的架构改变?

  最初,计算机系统只有被输入和储存图像以及文字等数据,而再进一步的可以进行简单的讯号收集、整理、辨识和分析。而加入了人工智能之后,这些讯号数据就可以被同时并存地进行特征性比较,然后对于这些特征性的文字图像进行判断。

  就如同能够对患者透过各种检查设备所拍摄而得到的图像进行分析,然后更进一步的获得诊察判断结果,同时再与数据库中的样品数据进行比对,根据所默认的规则来做出各种诊察报告。

  在以前,必须汇集各种所获得的医疗信息,以人工输入的方式,提供具有初步人工智能的计算机或仪器来进行比对分析。不过,伴随着计算机的计算能力有着飞跃性的发展,得以进行更为复杂繁重的程序计算,这样的变化,已经可以从「如果是A的话,那就会演化到B」的单纯对应关系,进步到「在A的情况下,如果出B的话,可能会演化成C」的多层判断和分析,让人工智能技术进步到可以自行「深度学习」的阶段,进而不再需要依赖人工来进行初步或比较过后的数据输入工作,凭借人工智能的深度学习能力,不断的反复进行运算,来达到数据自动辨识,快速增加高度判断的能力。

blob.png

  图五 : 人工智能透过机械式的方式来有规律地进行自我学习。

分享给小伙伴们:
本文标签:

更多文章

相关文章

  • 蛮便宜网
  • 天猫内部优惠券网
  • Copyright © 2002-2011 版权所有