主页(http://www.cnwulian.net):人工智能用于医疗 还有几道坎?
最近小智走在马路上遭遇「横祸」——眼睛被一粒尘埃袭击,泪眼婆娑赶到医院,排队挂号、等待叫号,一小时以后,终于等到眼科大夫。大夫让小智坐到仪器前,手拿一根棉签,轻轻擦过受伤的眼睛,顿时小智感觉眼前一片清明,全程却不到 30 秒。
向来讨厌医院的小智,被眼前的这位医生帅到,并且开始「担心」,未来是否会变成机器人为病患处理伤口?
短期内,小智并不担心这一状况会发生,因为无论是从医疗数据来源,机器学习训练速度还是投资人的热情来看,人工智能在中国医疗市场的商业化,还有很长路要走。
大公司、初创公司各不同
人工智能用于医疗领域的探索,在北美市场最为火热。其中,美国互联网「五巨头」(Google、Facebook、Amazon、IBM、Microsoft)表现抢眼。
谷歌的 DeepMind 最为人称道。年初,谷歌 DeepMind 成立 DeepMind Health 部门,与英国国家健康体系(NHS)合作,帮助他们辅助决策及提高效率。
合作试点中开发了名为 Streams 的软件。这一软件用于血液测试的 AKI 报警平台,帮助临床医生更快地查看医疗结果。7 月,谷歌 DeepMind 与NHS 再次合作,同Moorfields 眼科医院一起开发辨识视觉疾病的机器学习系统。
Moorfields 眼科医院将向 DeepMind 提供 100 万份匿名的眼球扫描资料,以供后者用来实施机器学习,形成眼疾早期迹象的算法。此外,DeepMind 还参与 NHS 一项利用深度学习开展头颈癌患者放疗疗法设计的研究。通过分析超过 700 名符合 UCLH 数据隐私政策的头颈癌患者匿名数据,利用深度机器来探讨缩短放疗时间的可能性。
不难看出,谷歌将人工智能用于医疗领域的主要方向是辅助决策、提高效率,方法是机器学习,原材料则是医疗数据。
相对而言,初创公司的「发力」领域更细化。据医疗服务网站动脉网的分析,全球范围内医疗健康领域人工智能初创公司主要分布在健康管理、可穿戴设备、医学影像、风险管理、营养、急救室/医院管理、生物技术、药物挖掘、精神健康、病理学和虚拟助理等细分领域。
国内医疗人工智能的三道坎
医疗数据来源:医疗体制和技术的双重束缚。中国人口基数大,理论上可以提供源源不断的医疗数据。但受制于封闭的医疗体系,不同医院、不同地区之间,病患的医疗数据尚未打通。客观上限制了原材料的流通。而从就诊习惯来看,国人更喜欢「听医嘱」,在智能设备的使用方面,接受度和使用能力都有待提高。
此外,中国的人工智能医疗应用也会面临和其他国家相同的问题:训练人工智能需要大量医疗数据,但医疗数据因为涉及患者隐私而非常敏感。加上医疗问题太过复杂,信息不完全透明,每种疾病的算法和数据各不相同,工作量巨大。训练一个机器的难度,不亚于临床医生的 8 年苦读。
智能医疗领域更注重「术业有专攻」。相较于美国「五巨头」在医疗领域的冲劲,国内的 BAT 们似乎兴趣不大。但一些与医疗相关的信息技术公司,却在默默耕耘。
较知名的企业有华大基因和碳云智能。华大基因成立于 1999 年,是全球最大的基因组学研发机构。2013 年 3 月,华大基因成功完成对美国上市公司 Complete Genomics 的收购,实现了基因测序上下游产业链的闭环。而碳云智能系原华大基因 CEO 王俊创立,其方向是建立一个健康大数据平台。
此外,还有多美视界,分别向 C 端和 B 端推出了小壹医疗机器人,联新移动医疗科技有限公司推出了围绕智慧医疗的人工智能解决方案等。
相对而言,BAT 在具体动作方面反而没那么活跃。硬要矮子里面挑将军,百度表现稍微踊跃一些:百度于 10 月正式推出百度医疗大脑,希望通过海量医疗数据、专业文献的采集与分析进行人工智能化的产品设计,模拟医生问诊流程,辅助基层医生完成问诊。
而阿里更多借助电商和支付优势,从药品端入手,以此为重点布局发展「药+医」模式,所以基本还停留在前端。
投资人的追捧,也是一个产业形成热度的必要因素。而在医疗人工智能领域,目前尚欠火候,投资人普遍认为「为时尚早」。。
小智以为,原因无外乎两方面,其一,投资人中,真正懂医疗的少。医疗的水太深,对于什么是噱头,什么是趋势,没有一定的专业知识积累,很难「押中」。
第二,医疗人工智能对投资人来说,缺少「激动人心的故事」,至少目前为止,市场上还未出现能够明确解决医疗「痛点」的人工智能技术。
据不完全统计,10 月份全国范围内的医疗健康(含移动医疗)的融资项目仅 14 起,其中在线综合服务 7 起,智能设备 1 起,医疗信息化 2 起,精准医疗 4 起,融资过亿的项目仅 3 起,且主要集中在生物技术企业。
以上,都是国内在将人工智能应用于医疗领域必须面对的问题。
但也不必悲观。在互联互通的当今世界,任何一项技术都有可能短时间内传播到世界的角落。
IBM 的 Watson 系统就是一个无法绕开的「典型」。目前在肿瘤治疗方面,Watson 已收录了肿瘤学研究领域的 42 种医学期刊、临床试验的 60 多万条医疗证据和 200 万页文本资料。
Watson 能够在几秒之内筛选数十年癌症治疗历史中的 150 万份患者记录,包括病历和患者治疗结果,并为医生提供可供选择的循证治疗方案。目前癌症治疗领域排名前三的医院都在运行 Watson。今年 8 月,中国正式引进了该系统。
此外,在中国推进分级诊疗的大背景下,人工智能也有可能帮助缓解「优秀医生不愿意下沉」的情况,通过人工智能协助基层医生迅速做出决策;而将人工智能用于医院管理虽然不够「黑科技」,但从目前我国医院现状来看,依然能够分担一部分医护人员的工作,从而缓解医患紧张关系。
这些,都是我们可以利用人工智能提升就医体验的事情。
查看信源地址
编辑: 郑涵之