主页(http://www.cnwulian.net):报告:人工智能行业分析和投资机会
2. 图像角度
目前的应用主要在人脸识别、照片自动归类、图片搜索、自动驾驶/ADAS等方面。但应用有前后之分,比如:医疗领域的人工影像的算法研究比较滞后,识别率达到70%左右,这种识别不够精确,不能很好地对医生加以辅助。
促使计算机在图像感知、图像识别上发生飞跃的技术主要有以下三个方面:
算法、深度学习网络和模型;
海量深度数据的训练模型;
从CPU到GPU的使用。
3. 产品角度
(1)人工智能的应用给生活带来的影响及场景描述:
从信息到服务:
举例:从原来人工找咖啡馆喝咖啡到之后享受被送到指定地点咖啡的服务;从原来人工订票到使用人工智能技术享受订好票订的过程。
从软件到软硬结合:
无人车等都具备软件和硬件结合交互的特征,将具备可移动性、可随身携带性,从但一到综合,会有更多传感器、更丰富交互性(视觉、语音、语言、手势、移动等)。
(2)常见的AI产业化路线:
在已有的产品中实现AI first战略 例如:Google;
AI作为技术API提供给第三方;
创业公司从技术或者应用入手。
(3)toB还是toC?
目前大部分公司定位为toB,需求明确、市场接受度高,将率先落地,同时较容易普及。而toC除了扫地机、无人机等品类外,其它领域的需求还不够强劲、市场接受度较差、技术和市场成熟还需时日,但是目前有越来越多定位toC的产品出来,例如Amazon Echo、出门问问的ticwatch等。
4. 人才角度
深度学习的再一次兴起起源于学术界,但目前学术界的大牛大部分被挖到巨头公司。之前是学术界的研究领先于工业界,但现在人才、计算资源等条件,巨头已领先于学术界,研究的中心已转移到工业界。
现在来看美国比中国还是领先不少,美国有4大名校:MIT、斯坦福、卡内基梅隆、纽约大学,还有Google、Facebook、MS这些大牛公司,培养了很多人才。在语音识别,图像处理等领域国际很多顶级专家都是华人。国内也有很多专家,行业薪资待遇越来越好,会吸引更多的优秀人才进来。这批人目前可能在百度、腾讯和阿里,将来可能加入创业大军(已经出现)。
中国的优势在于有大量互联网用户,很多的数据,有和各行各业结合紧密的应用,未来美国技术+中国商业模式会引领人工智能的发展。
相较于O2O、直播等领域,人工智能创业门槛较高,创始人以及核心团队一般均有极强的科研背景,行业人才较为稀缺,导致了行业创业公司总体数量较少。
巨头参与加剧竞争,创业者要思考“你与BAT竞争有什么优势”,选好产品定位和切入点。
人工智能不仅对于创业者来说门槛较高,对于投资人同样如此,要结合技术和应用前景作出准确判断挑战较大。
全球融资历史
1. 融资额
AI领域的融资额从2011年的$282M增长到2015年的$2.4B,增长了约7倍,未来仍将继续保持快速增长。