主页(http://www.cnwulian.net):智能电网基本理念阐释
余贻鑫,刘艳丽,秦超
近年来,电力系统正面临着越来越多的挑战,其中包括全球气候变暖、能源安全需求压力和生态文明意识的提升,以及数字化社会对供电可靠性和电能质量的严格要求等。为此,我国已经开展了许多与“智能电网”开发和实践相关的研究。
从电网的角度来说,智能电网的原动力至少包含下述4个方面:①实现事故扰动情况下大电网的安全稳定运行,降低大规模停电的风险和增强灾难性事件后的快速恢复能力;②实现大量分布式电源(DER)的无缝接入和充分利用;③高级市场化和需求侧管理;④满足数字化社会对电网供电的高可靠性、高质量和高效率的要求。
从广义层面来看,由于智能电网的实施涉及许多技术和商业领域,智能电网的一个关键目标是催生新的技术和商业模式,从而实现产业革命。
智能电网涉及许多重要的理念,厘清这些理念有助于科学高效地实施智能电网工程。本文对其中的一些基本理念进行了阐述。
1智能电网最本质的技术特点
智能电网最本质的技术特点是:电力和信息的双向流动性,并由此建立起一个高度自动化和广泛分布的能量交换网络;把分布式计算、通信和互联网的优势引入电网,实现信息实时交换并达到设备层次上近乎瞬时的供需平衡。有如下四个方面的特点需要强调。
1.1灵活的网络拓扑结构和综合能源及通信系统体系结构(IECSA)
由于DER的广泛接入,电网(含输电网和配电网)每条支路的电力潮流都可能是双向的和时变的,因此,为了使智能电网的潜在效益最大化,配电网拓扑结构应该是灵活的、可重构的,应该使用柔性交直流输配电装置和以智能万用变压器(IUT)为代表的其他电力电子装置,其中智能万用变压器已被看成智能配电网的基石,在能源互联网的概念中它属于能量路由器。此外,电力所及之处均有可靠的双向通信网络。从底层的传感器和智能代理开始,能源网和信息通信网将高度融合。
1.2广泛的分布式电源(DER)
DER包括分布式发电、分布式储能和需求响应。其中,太阳能、风能和需求响应是按照自然地理学进行分布的。这里“需求响应”的定义是:在正常耗电模式下,终端用户用电情况能够随着零售电价的变化而变化,或当电力零售市场电价过高或电网系统可靠性受到损害时,用户会减小用电量。因此,如下观察结果值得注意。
(1)当DER发电接近电力负荷时,功率与能量可以就地消纳,因此它可以节省电网的投资、降低网损和电网的运维成本。加之传统电力价格逐年上升,太阳能光伏发电成本迅速下降,分布式储能成本也在不断下降,以燃气为主的分布式热电联产(CHP)系统的能源利用率将会高于80%。这一切预示着分布式发电成本与零售电价之间有望持平。而且分布式发电可以提高对用户供电的可靠性,增强电网的安全性。因此,世界上与智能电网的开发和实施相关的研究主要是关于分布式发电的。
事实上,天津大学所做的研究已经表明,在当今的中国,从社会总成本的角度看,实施“分布式光伏发电+有源配电网”计划(例如,给无储能系统的分布式光伏发电站局部接入有源配电网)比实施一个“大规模集中式可再生能源发电基地+长距离传输”计划(例如,将一个风电与火电结合的大规模发电基地通过±800kV超高压(UHV)、2000km长距离直流输电线接入到负荷中心的一个大容量电力系统)所花费的社会总成本要低。
因此,如何处理数以万计的分布式电力资源并应对其间歇性、多变性和不确定性,同时确保电网的可靠性、人身和设备安全及市场的活力是未来电网发展所面临的挑战。
(2)研究表明,电网中存在大量的可平移负荷,这些负荷可与电网友好合作(犹如虚拟电源),从而实现削峰填谷(可提高资产利用率、提高发电效率和降低网损)并达到设备层次上近乎瞬时的供需平衡(例如,需求响应和负荷控制可能对太阳能和风能等的间歇性、多变性和不确定性发挥补偿作用)。与传统电网把时刻满足负荷需求作为刚性约束相比,这是革命性的变化。智能电网将通过智慧型电表基础设施建设(AMI)、即插即用技术和先进的电力市场来协调需求侧响应和负荷控制。同时综合考虑负荷与配电系统的控制和管理。
(3)插电式混合动力电动汽车与智能汽车电网(V2G)技术本身都具备负荷和电源的双重属性,它们的充电功率和存储能量均很大;另外,与分布式光伏发电和风电等相比,这些电动汽车接入电网的位置和容量具有更大的不确定性。一方面,作为一种新型负荷,电动汽车的大量接入使得配电网的负荷增大且特性更加复杂多变,对未来电网的规划与运行提出了挑战;另一方面,作为一种储能装置,电动汽车又可为电网的削峰填谷和频率调节等提供重要的潜在调控手段。为此,智能电网应该为电动汽车提供一种即插即用的平台(包括先进的市场与新型技术支持)。
除了在电动汽车中的应用,分布式储能也可应用于配电系统的各个环节,以提高系统运行的可靠性、改善电能质量和提高可再生能源的接入能力等。因此,智能电网将为分布式储能与配电系统间更多的交互与协调控制提供基本的平台。
令人可喜的是,近年来分布式储能技术的创新发展十分迅速,有望突破储能成本过高的瓶颈。
1.3分布式智能基础设施
(1)在微处理器时代之前创建的电力基础设施(基于集中规划和控制),在很大程度上限制了电网的灵活性,降低了电网的效率、安全性和可靠性。此外,由于未来电网中将接入数量巨大的DER,并且其发电量又难以预测,传统的集中控制模式将更加难以适用于未来电网的运行。因此智能电网特别是智能配电网将成为分布式智能基础设施。
如图1所示,以智能配电网为例,它被分成许多片(cell)。正常运行条件下,两片之间的交换功率可以根据制订好的计划进行调度。每片中有许多由片内通信网络相互连接起来的智能网络代理(INA),如继电保护装置和DER等。这些代理能够收集和交流系统信息,可以对局部控制做出自主决策(如继电保护),也可以通过各片配电系统快速仿真与建模(DFSM)协调做出决策(如电压调节、无功优化和网络重构等);同时各片之间有通信联系,各片可以自主做出决策,也可由装有DFSM系统的配电运营中心协调各片间的决策。此外,输电网调度中心和由该输电网供电的配电运营中心之间也有通信链接。
装有输电快速仿真与建模(TFSM)系统的输电调度中心,根据区域电力系统的要求协调做出决策,实现跨地理边界和组织边界的智能控制,使整个系统具备了自愈能力和韧性。